Recursive Languages Lecture 31 Section 11.1

Robb T. Koether

Hampden-Sydney College

Wed, Nov 9, 2016

э

DQC

- 2 Recursively Enumerable Languages
- 3 Countable and Uncountable Sets
- 4 Non-Recursively Enumerable Sets
- 5 Assignment

Outline

Recursive Languages

- 2 Recursively Enumerable Languages
- 3 Countable and Uncountable Sets
- 4 Non-Recursively Enumerable Sets
- 5 Assignment

4 B > 4 B

I > <
I >
I

Definition (Recursive Language)

A language is recursive if there is a Turing machine *M* that accepts it and that halts on every input. In other words, for every word $w \in \Sigma^*$, *M* either halts with acceptance, if $w \in L$, or *M* halts with rejection, if $w \notin L$.

э

• All regular languages.

э

- All regular languages.
- All context-free langauges.

I > <
I >
I

- All regular languages.
- All context-free langauges.
- $\{a^nb^nc^n \mid n \ge 0\}$

- All regular languages.
- All context-free langauges.
- $\{a^nb^nc^n \mid n \ge 0\}$
- Many others.

- All regular languages.
- All context-free langauges.
- $\{a^nb^nc^n \mid n \ge 0\}$
- Many others.
- Are there languages that are not recursive?

4 A 1

Recursive Languages

2 Recursively Enumerable Languages

- 3 Countable and Uncountable Sets
- 4 Non-Recursively Enumerable Sets

5 Assignment

∃ ► < ∃</p>

I > <
I >
I

Definition (Recursively Enumerable Language)

A language is recursively enumerable if there is a Turing machine that accepts it.

∃ ► ∢

4 A 1

Definition (Recursively Enumerable Language)

A language is recursively enumerable if there is a Turing machine that accepts it.

• Such a Turing machine may or may not halt in a reject state for words not in the language. It may loop.

4 ∃ > < ∃ >

Definition (Recursively Enumerable Language)

A language is recursively enumerable if there is a Turing machine that accepts it.

- Such a Turing machine may or may not halt in a reject state for words not in the language. It may loop.
- If it does always halt, then the language is actually recursive, not just recursively enumerable.

4 ∃ > < ∃ >

• The following languages are recursively enumerable.

э

- The following languages are recursively enumerable.
 - All recursive languages.

4 3 > 4 3

Image: A marked and A marked

- The following languages are recursively enumerable.
 - All recursive languages.
 - Many others?

- The following languages are recursively enumerable.
 - All recursive languages.
 - Many others?
- Are there languages that are not recursively enumerable?

4 ∃ > 4

Outline

- 2 Recursively Enumerable Languages
- 3 Countable and Uncountable Sets
- 4 Non-Recursively Enumerable Sets

5 Assignment

4 3 > 4 3

Image: A marked and A marked

Theorem

Let Σ be a finite, nonempty set. Then Σ^* is a countably infinite set.

Robb T. Koether (Hampden-Sydney College)

Recursive Languages

Wed, Nov 9, 2016 10 / 23

A B F A B F

I > <
I >
I

- Let $\Sigma = \{a_1, \ldots, a_n\}$ for some $n \ge 1$.
- Then we can create an enumeration of Σ* if we order its member first by length and then, within those groups, order them by their indexes:

$$\lambda$$
, $\underline{a_1, \ldots, a_n}$, $\underline{a_1a_1, a_1a_2, a_1a_3, \ldots, a_na_n}$, $a_1a_1a_1, \ldots$

- We have seen this ordering before.
- This enumeration demonstrates that the set is countable.

A B F A B F

Theorem

Let S be an infinite set. Then $\mathcal{P}(S)$ is a uncountable.

Robb T. Koether (Hampden-Sydney College)

Recursive Languages

Wed. Nov 9, 2016 12 / 23

э

イロト イポト イヨト イヨト

- Let $S = \{a_1, a_2, a_3, \ldots\}$
- Any infinite string of 0's and 1's can be interpreted as representing a subset of S.
 - A 1 in position *i* means that *a_i* is in the subset.
 - A 0 in position *i* means that *a_i* is not in the subset.

• For example, 0011010... represents $\{a_3, a_4, a_6, ...\}$.

- Now suppose that $\mathcal{P}(S)$ is countable.
- Then its members (the subsets of S) can be listed S_1, S_2, S_3, \ldots
- Form a two-way infinite array and consider the diagonal.

For example,

	a ₁	<i>a</i> ₂ 0 1 1 0	a_3	a_4	a_5	
S_1	0	0	1	1	0	
S_2	0	1	0	0	1	
S_3	1	1	0	1	0	
S_4	0	0	1	1	1	
S ₅	1	1	0	1	1	
÷	E	÷	÷	÷	÷	·

3

イロト イポト イヨト イヨト

- Now suppose that $\mathcal{P}(S)$ is countable.
- Then its members (the subsets of S) can be listed S_1, S_2, S_3, \ldots
- Form a two-way infinite array and consider the diagonal.
- For example,

	a ₁	<i>a</i> ₂ 0 1 1 0	a_3	a_4	a_5	
S_1	0	0	1	1	0	•••
S_2	0	1	0	0	1	
S_3	1	1	0	1	0	
S_4	0 0 1 0	0	1	1	1	
S_5	1	1	0	1	1	•••
÷	E	÷	÷	÷	÷	•.

э

イロト イポト イヨト イヨト

- Form a binary string that is the exact opposite of the diagonal elements.
- In the example, that string would be 10100..., representing $\{a_1, a_3, ...\}$.
- That set cannot not be in the listing *S*₁, *S*₂, *S*₃, ..., and that is a contradiction.
- Therefore, $\mathcal{P}(S)$ is uncountable.

- 3

∃ ► < ∃ ►</p>

Outline

Recursive Languages

- 2 Recursively Enumerable Languages
- 3 Countable and Uncountable Sets
- 4 Non-Recursively Enumerable Sets

5 Assignment

∃ ► 4 Ξ

I > <
I >
I

Theorem

There exists a language that is not recursively enumerable. That is, there is a language L such that for every Turing machine $M, L \neq L(M)$.

∃ ► < ∃ ►</p>

• Assume that $\Sigma \neq \emptyset$ (obviously).

3

Sac

イロト イポト イヨト イヨト

- Assume that $\Sigma \neq \emptyset$ (obviously).
- Then Σ^* is an infinite set.

3

- Assume that $\Sigma \neq \emptyset$ (obviously).
- Then Σ^* is an infinite set.
- Each language over Σ is a subset of Σ*, so (by the previous theorem) there are uncountably many different languages.

∃ ► < ∃ ►</p>

On the other hand, there are only countably many Turing machines.

э

∃ ► < ∃ ►</p>

I > <
I >
I

1

- On the other hand, there are only countably many Turing machines.
- Each Turing machine can be represented as a finite binary string, as we saw when designing the universal Turing machine.

- On the other hand, there are only countably many Turing machines.
- Each Turing machine can be represented as a finite binary string, as we saw when designing the universal Turing machine.
- The set of all strings over {0,1} (not just those that describe Turing machines) is countably infinite.

∃ ► < ∃ ►</p>

• Therefore, there can be no onto mapping from the set of Turing machines to the set of all languages.

∃ ► ∢

- Therefore, there can be no onto mapping from the set of Turing machines to the set of all languages.
- In particular, the mapping $M \rightarrow L(M)$ is not onto.

THE 1 A

- Therefore, there can be no onto mapping from the set of Turing machines to the set of all languages.
- In particular, the mapping $M \rightarrow L(M)$ is not onto.
- So, for some language *L*, there is no Turing machine *M* such that L(M) = L.

∃ ► < ∃ ►</p>

Outline

Recursive Languages

- 2 Recursively Enumerable Languages
- 3 Countable and Uncountable Sets
- 4 Non-Recursively Enumerable Sets

∃ ► 4 Ξ

I > <
I >
I

Homework

• Section 11.1 Exercises 2, 3, 5, 8, 10, 12, 13 (if and only if).

Robb T. Koether (Hampden-Sydney College)

Recursive Languages

Wed, Nov 9, 2016 23 / 23

3

Sac

イロト イポト イヨト イヨト