Recursive Languages
 Lecture 31 Section 11.1

Robb T. Koether
Hampden-Sydney College

Wed, Nov 9, 2016
(9) Recursive Languages
(2) Recursively Enumerable Languages
(3) Countable and Uncountable Sets
4. Non-Recursively Enumerable Sets
(5) Assignment

Outline

(9) Recursive Languages
(2) Recursively Enumerable Languages
(3) Countable and Uncountable Sets

4 Non-Recursively Enumerable Sets
(5) Assignment

Recursive Languages

Definition (Recursive Language)

A language is recursive if there is a Turing machine M that accepts it and that halts on every input. In other words, for every word $w \in \Sigma^{*}, M$ either halts with acceptance, if $w \in L$, or M halts with rejection, if $w \notin L$.

Recursive Languages

- The following languages are recursive.

Recursive Languages

- The following languages are recursive.
- All regular languages.

Recursive Languages

- The following languages are recursive.
- All regular languages.
- All context-free langauges.

Recursive Languages

- The following languages are recursive.
- All regular languages.
- All context-free langauges.
- $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Recursive Languages

- The following languages are recursive.
- All regular languages.
- All context-free langauges.
- $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$
- Many others.

Recursive Languages

- The following languages are recursive.
- All regular languages.
- All context-free langauges.
- $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$
- Many others.
- Are there languages that are not recursive?

Outline

(1) Recursive Languages
(2) Recursively Enumerable Languages
(3) Countable and Uncountable Sets
(4) Non-Recursively Enumerable Sets
(5) Assignment

Recursively Enumerable Languages

Definition (Recursively Enumerable Language)

A language is recursively enumerable if there is a Turing machine that accepts it.

Recursively Enumerable Languages

Definition (Recursively Enumerable Language)

A language is recursively enumerable if there is a Turing machine that accepts it.

- Such a Turing machine may or may not halt in a reject state for words not in the language. It may loop.

Recursively Enumerable Languages

Definition (Recursively Enumerable Language)

A language is recursively enumerable if there is a Turing machine that accepts it.

- Such a Turing machine may or may not halt in a reject state for words not in the language. It may loop.
- If it does always halt, then the language is actually recursive, not just recursively enumerable.

Recursively Enumerable Languages

- The following languages are recursively enumerable.

Recursively Enumerable Languages

- The following languages are recursively enumerable.
- All recursive languages.

Recursively Enumerable Languages

- The following languages are recursively enumerable.
- All recursive languages.
- Many others?

Recursively Enumerable Languages

- The following languages are recursively enumerable.
- All recursive languages.
- Many others?
- Are there languages that are not recursively enumerable?

Outline

(1) Recursive Languages
(2) Recursively Enumerable Languages
(3) Countable and Uncountable Sets
(4) Non-Recursively Enumerable Sets
(5) Assignment

Countable and Uncountable Sets

Theorem
Let Σ be a finite, nonempty set. Then Σ^{*} is a countably infinite set.

Countable and Uncountable Sets

Proof.

- Let $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ for some $n \geq 1$.
- Then we can create an enumeration of Σ^{*} if we order its member first by length and then, within those groups, order them by their indexes:

- We have seen this ordering before.
- This enumeration demonstrates that the set is countable.

Countable and Uncountable Sets

Theorem
Let S be an infinite set. Then $\mathcal{P}(S)$ is a uncountable.

Countable and Uncountable Sets

Proof.

- Let $S=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$
- Any infinite string of 0's and 1's can be interpreted as representing a subset of S.
- A 1 in position i means that a_{i} is in the subset.
- A 0 in position i means that a_{i} is not in the subset.
- For example, $0011010 \ldots$ represents $\left\{a_{3}, a_{4}, a_{6}, \ldots\right\}$.

Countable and Uncountable Sets

Proof.

- Now suppose that $\mathcal{P}(S)$ is countable.
- Then its members (the subsets of S) can be listed $S_{1}, S_{2}, S_{3}, \ldots$
- Form a two-way infinite array and consider the diagonal.
- For example,

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	\cdots
S_{1}	0	0	1	1	0	\cdots
S_{2}	0	1	0	0	1	\cdots
S_{3}	1	1	0	1	0	\cdots
S_{4}	0	0	1	1	1	\cdots
S_{5}	1	1	0	1	1	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Countable and Uncountable Sets

Proof.

- Now suppose that $\mathcal{P}(S)$ is countable.
- Then its members (the subsets of S) can be listed $S_{1}, S_{2}, S_{3}, \ldots$
- Form a two-way infinite array and consider the diagonal.
- For example,

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	\cdots
S_{1}	0	0	1	1	0	\cdots
S_{2}	0	1	0	0	1	\cdots
S_{3}	1	1	0	1	0	\cdots
S_{4}	0	0	1	1	1	\cdots
S_{5}	1	1	0	1	1	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Countable and Uncountable Sets

Proof.

- Form a binary string that is the exact opposite of the diagonal elements.
- In the example, that string would be $10100 \ldots$, representing $\left\{a_{1}, a_{3}, \ldots\right\}$.
- That set cannot not be in the listing $S_{1}, S_{2}, S_{3}, \ldots$, and that is a contradiction.
- Therefore, $\mathcal{P}(S)$ is uncountable.

Outline

(1) Recursive Languages

(2) Recursively Enumerable Languages
(3) Countable and Uncountable Sets
4) Non-Recursively Enumerable Sets
(5) Assignment

Non-Recursively Enumerable Sets

Theorem

There exists a language that is not recursively enumerable. That is, there is a language L such that for every Turing machine $M, L \neq L(M)$.

Non-Recursively Enumerable Sets

Proof.

- Assume that $\Sigma \neq \varnothing$ (obviously).

Non-Recursively Enumerable Sets

Proof.

- Assume that $\Sigma \neq \varnothing$ (obviously).
- Then Σ^{*} is an infinite set.

Non-Recursively Enumerable Sets

Proof.

- Assume that $\Sigma \neq \varnothing$ (obviously).
- Then Σ^{*} is an infinite set.
- Each language over Σ is a subset of Σ^{*}, so (by the previous theorem) there are uncountably many different languages.

Non-Recursively Enumerable Sets

Proof.

- On the other hand, there are only countably many Turing machines.

Non-Recursively Enumerable Sets

Proof.

- On the other hand, there are only countably many Turing machines.
- Each Turing machine can be represented as a finite binary string, as we saw when designing the universal Turing machine.

Non-Recursively Enumerable Sets

Proof.

- On the other hand, there are only countably many Turing machines.
- Each Turing machine can be represented as a finite binary string, as we saw when designing the universal Turing machine.
- The set of all strings over $\{0,1\}$ (not just those that describe Turing machines) is countably infinite.

Non-Recursively Enumerable Sets

Proof.

- Therefore, there can be no onto mapping from the set of Turing machines to the set of all languages.

Non-Recursively Enumerable Sets

Proof.

- Therefore, there can be no onto mapping from the set of Turing machines to the set of all languages.
- In particular, the mapping $M \rightarrow L(M)$ is not onto.

Non-Recursively Enumerable Sets

Proof.

- Therefore, there can be no onto mapping from the set of Turing machines to the set of all languages.
- In particular, the mapping $M \rightarrow L(M)$ is not onto.
- So, for some language L, there is no Turing machine M such that $L(M)=L$.

Outline

(9) Recursive Languages
(2) Recursively Enumerable Languages
(3) Countable and Uncountable Sets
4) Non-Recursively Enumerable Sets
(5) Assignment

Assignment

Homework

- Section 11.1 Exercises 2, 3, 5, 8, 10, 12, 13 (if and only if).

